梦汇学堂强烈推荐:
【高端IT计算机技术类会员】【课程上新】
【D0327 拉勾专栏-数据挖掘思维与实战 24 讲-IT】
●资料路劲 IT资料/拉勾专栏/D0327 拉勾专栏-数据挖掘思维与实战 24 讲-IT
[红包]限时9.80[红包]
官方链接:https://kaiwu.lagou.com/course/courseInfo.htm?courseId=405&sid=20-h5Url-0&lgec_type=website&lgec_sign=86228E00A960E2EB44DCA4027393428B&buyFrom=2&pageId=1pz4#/sale
课程内容:
开篇词
开篇词 | 掌握数据挖掘,搭上划时代的数字化列车
模块一:数据挖掘基础知识
01 | 数据挖掘,到底在解决什么问题?
02 | Python 的数据结构和基本语法
03 | 工欲善其事必先利其器,扩展包与 Python 环境
模块二:数据挖掘工作流程
04 | 理解业务和数据:我们需要做好什么计划?
05 | 准备数据:如何处理出完整、干净的数据?
06 | 数据建模:该如何选择一个适合我需求的算法?
07 | 模型评估:如何确认我们的模型已经达标?
08 | 模型应用:我们的模型是否可以解决业务需求?
模块三:分类问题
09 | KNN 算法:近朱者赤,近墨者黑
10 | 决策树:女神使用的约会决策
11 | 朴素贝叶斯:算一算你是否要买延误险
12 | 支持向量机(SVM):用一条线分开红豆与绿豆
13 | 人工神经网络:当前最火热的深度学习基础
14 | 实践 1:使用 XGB 实现酒店信息消歧
模块四:聚类问题
15 | k-means 聚类:擒贼先擒王,找到中心点,它附近的都是一类
16 | DBScan 聚类:打破形状的限制,使用密度聚类
17 | 实践 2:如何使用 word2vec 和 k-means 聚类寻找相似的城市
模块五:回归问题
18 | 线性回归与逻辑回归:找到一个函数去拟合数据
19 | 实践 3:使用线性回归预测房价
模块六:关联分析
20 | Apriori 与 FP-Growth:不得不再说一遍啤酒与尿布的故事
21 | 实践 4:用关联分析找到景点与玩法的关系
模块七:自然语言处理
22 | TF-IDF:一种简单、古老,但有用的关键词提取技术
23 | word2vec:让文字可以进行逻辑运算,女人+王冠=女王
24 | 实践 5:使用 fastText 进行新闻文本分类
彩蛋 | 数据挖掘工程师如何进阶
结束语
结语 | 培养数据挖掘思维,终身学习